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A method for quantifying uncertainty in conceptual-level design via a computationally-
efficient probabilistic method is described. As an example application, the investigated
method is applied to estimating the propellant mass required by a spacecraft to perform
attitude control. The variables of the design are first classified and assigned appropriate
probability density functions. To characterize the attitude control system a slightly-modified
version of Subset Simulation, an efficient simulation technique originally developed for reli-
ability analysis of civil engineering structures, is used. The proposal distribution aspect of
Subset Simulation is modified vis-à-vis the original technique to account for the general
characteristics of the variables involved in conceptual-level design. The results of Subset
Simulation are compared with traditional Monte Carlo simulation. The investigated method
allows uncertainty in the propellant required to be quantified based on the risk tolerance of
the decision maker. For the attitude control example presented, Subset Simulation success-
fully replicated Monte Carlo simulation results yet required significantly less computational
effort, in particular for risk-averse decision makers.

Nomenclature
Amax maximum cross-sectional area
Cd discrete custom random variable
F failure
G response function
J moment of inertia
L(μ, σ ) lognormal random variable with parameters μ and σ

m number of Subset Simulation levels
N number of Subset Simulation samples
Nc number of Markov chains developed at each simulation level; Nc = p0N
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NT number of Monte Carlo simulation samples
N(μ, σ ) normal random variable with parameters μ and σ

P probability
PMCS Monte Carlo simulation value of the propellant mass required
Px xth percentile value of the propellant mass required
p confidence level probability
p∗ proposal PDF
pinlet pressure at engine inlet
p0 conditional probability for Subset Simulation; p0 ∈ (0, 1)

q spacecraft surface reflectivity
R engine moment arm
r effective engine moment arm
Tp propellant temperature
U(min, max) continuous uniform random variable with parameters min and max
Ud(min, max) discrete uniform random variable with parameters min and max
X general random variable
x percentile value
Y random variable representation of tradable parameter y
Y t true value of Y
y tradable parameter
�(a, b) gamma random variable with parameters a and b
α engine misalignment angle
γ correlation factor
δ coefficient of variation (COV)
� random variable representation of input parameter θ

θ input variable (parameter)
κ distance from the center of pressure to the center of mass
μ mean of a normal or lognormal probability distribution
ξ specified threshold value
ρi(k) correlation coefficient of the indicator function I (Y (�) > ξi−1) evaluated at k Markov chain

samples apart at the i-th simulation level
σ standard deviation of a normal or lognormal probability distribution
χ fraction used in calculating proposal PDF width
ψ slew angle
ω spin rate

Subscripts
f final desired
i initial
j input variable uncertainty number
xx, yy axes orthogonal to the spin axis
zz spin axis

I. Introduction

SPACECRAFT are complex multidisciplinary systems with a dozen or more subsystems. Attitude control is one
example of such a spacecraft subsystem (discipline). All complex multidisciplinary systems including spacecraft

require engineers and designers to deal with uncertainty. Uncertainty impacts the decisions engineers and managers
make in how they design complex multidisciplinary systems. This impact of uncertainty in the design of a spacecraft
attitude control system (ACS) is well exemplified by the total propellant required for attitude control. The propellant
mass required to maintain attitude control is one of the most important parameters that the ACS estimates during
conceptual design. For spacecraft with engines as the only effectors available, the propellant available for attitude
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control may determine the lifetime of the spacecraft. Furthermore, improper modeling and estimation of attitude
control propellant may lead to mission failure. Quantifying the uncertainty in attitude control propellant required is
also important early in the design process from a multidisciplinary standpoint as another subsystem (propulsion) is
required to store and distribute this additional propellant and provide the engines to effect maneuvers. Overestimating
the propellant required that is subsequently never used can have a significant “ripple effect” on the total mass and
cost of the spacecraft.

Uncertainty in complex multidisciplinary systems can be classified into four types: ambiguity, epistemic, aleatory,
and interaction.1 Detailed definitions and explanations of these uncertainties as well as an overview of uncertainty
taxonomies in a variety of fields are provided in [1]. Table 1 provides examples for each of these uncertainty types
in the field of spacecraft attitude control. Since it is arguably more important to determine the significant sources
of uncertainty in preliminary design than identifying and quantifying all uncertainty sources, Table 1 also indicates
whether this form of uncertainty is viewed as significant and hence, included in the subsequent analysis.

Engineering design can be mathematically formulated as

y = G (θ) (1)

Equation (1) represents a general expression for design where a vector θ of input parameters (variables) is
mapped to a vector y of output parameters (tradable parameters) via one or more transformation (response) functions
G. The response function(s) may be complicated (e.g., closed-form equations, computational algorithms, “black
box” functions) requiring significant expense in time and resources to calculate values. Whereas, current design
methods traditionally assume these input variables are deterministic and uncertainty is evaluated ex-post facto, the
method described in this paper follows probabilistic design techniques that quantify the uncertainty in the tradable
parameters y by accounting for all the uncertainties in the θ input variables themselves.2 In this context, the vector
θ in Eq. (1) is replaced by � that may include discrete random variables, continuous random variables, constant
values, and discrete choices among options. The set of output parameters that depend on the random vector � is now
denoted by the capital letter Y:

Y = G (�) (2)

Probability theory is well-known to provide a rational and consistent framework for treating uncertainties and
plausible reasoning.3–5 Probabilistic methods offer a viable approach to manage uncertainties that confront a decision
maker.A decision maker is one or more individuals or organizations responsible for making final decisions in a project.
We use the singular in this paper although the decision maker may consist of more than one individual or organization.

The output vector of random variables Y assumes that the given response functions G are “perfect” with no uncer-
tainty in the response functions (models). Approximation error in a given tradable parameter (dependent variable)

Table 1 Examples of different uncertainty types.

Included in this
Uncertainty type Attitude control example paper’s analysis?

Ambiguity The pointing control must be 2◦ [everywhere? continuously?] No
Epistemic

Model The difference between the propellant mass predicted by an
analytic model and the actual flight measured total

Yes

Phenomenological The density profile of Neptune’s atmosphere No
Behavioral

Design The choice between two different engines for attitude control Yes
Requirement The spacecraft shall be able to de-spin from 10 rpm [and this

requirement later changes to 15 rpm]
Yes

Volitional An analysis an engineer says he will perform but does not No
Human errors A mistake in measuring the mass of an engine No

Aleatory The thrust of an engine at a given pressure Yes
Interaction The combination of choice between two different engines and

the fact that their thrust levels are not certain
Yes
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can be represented as a random variable and related to the true value:2

Y t = Y + X (3)

A probability density function (PDF) can be determined for X if sufficient data are available to compare to the
values determined by the model. Assuming the approximation error X is independent of the model prediction Y, the
cumulative distribution function (CDF) of the tradable parameter can be obtained as the convolution of the CDFs of
Y and X. A CDF value is selected based on the risk tolerance of the decision maker. The risk tolerance of a decision
maker will manifest itself through the percentile value, p, of this CDF the decision maker chooses to believe. For
example, the 90, 99, and 99.9 percentiles might provide a decision maker with low-, medium-, and high-confidence
estimates in the probability that a tradable parameter will not be exceeded. These three percentiles may correspond
to a risk-tolerant, risk-neutral, or risk-averse decision maker, respectively. The extreme tails of a tradable parameter
distribution are important in the design of many complex engineering systems. A spacecraft may need an accurate
estimate of the 99, 99.9, or 99.99 percentile values for its reliability to see if it will survive long enough to complete
its mission while an aircraft would like accurate estimates of the extreme tail values of its range to be certain a target
or destination can be reached in an emergency situation.

Unfortunately, the traditional method for accessing such uncertainties (Monte Carlo simulation) requires a large
number of samples to accurately determine extreme tail (high- or low-percentile) values which may require a pro-
hibitive amount of time and resources to complete. Advanced Monte Carlo methods are being developed with the
aim to be applicable to complex engineering systems that involves general nonlinear response and a large number
of random variables.6,7 The method described in this paper applies an innovative sampling technique known as Sub-
set Simulation to accurately determine CDF values of interest while significantly reducing the amount of response
function calculations and hence, the total computation cost. Originally developed and applied in estimating small
failure probabilities in high-dimension structural-engineering applications, Subset Simulation has been modified to
handle more general situations.8–11

The remainder of the paper summarizes the investigated method, its application to a spacecraft ACS, and discusses
the results. Details of the actual spacecraft ACS model assumed are provided in [10].

II. Method Summary
The general method to evaluate the CDF of Eq. (2) begins with identifying all the tradable parameters of concern

to a decision maker. With tradable parameters identified, the engineering system (response function) is formulated
mathematically. This mathematical formulation may be an analytic model for each tradable parameter. Such a model
might include dozens or hundreds of equations and relations. A model may be existing off-the-shelf software or
a custom program for this specific system. Much analysis for ACS, particularly for non-Earth orbiting spacecraft,
is mission specific and requires customized models. Determining how accurate models need to be to effectively
assess uncertainty in conceptual design is a critical issue. In this work, modeling error is addressed as an additive
uncertainty, see Eq. (3), whose distribution is assigned based on expert judgment.

With models and model uncertainty assessed, the input variables are classified and given a probabilistic repre-
sentation. Classifying the variables into their uncertainty types is useful in understanding their respective impact on
the overall design. Variables are characterized by a PDF. The PDF applied to each variable may be determined from
existing data, analogy, analysis, expert opinion, or a combination of these.

To propagate the uncertainty of the input variables and assess the probabilistic characteristics of the tradable
parameters, two simulation techniques, Monte Carlo simulation and Subset Simulation, are considered in this work.
The former serves as a benchmark for the latter. Uncertainty in the model (approximation error) is assessed at the final
step for Monte Carlo simulation. The CDF results for the model response Y obtained by the simulation techniques
are probabilistically convolved with the CDF of model uncertainty X to yield final estimate of the uncertainty in each
tradable parameter Y t which can then be used by the decision maker to guide design decisions. In Subset Simulation,
model uncertainty is treated at the same level as any other uncertainty via an input variable. In this paper, model
uncertainty is assumed to be Gaussian with zero mean (implying unbiased prediction) and some appropriate value
of variance chosen a prioiri.
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A. Monte Carlo Simulation
Monte Carlo simulation (MCS) solves a problem by generating suitable random numbers and observing the

fraction of the numbers obeying some property or properties. Monte Carlo simulation is the most established sampling
technique and the benchmark for comparison by other techniques. Monte Carlo simulation involves two steps. First,
N random realizations (samples) of the uncertain input variables, θ , are generated according to their specified
probability distributions. In the second step the tradable parameters y are evaluated via the response function(s) G
for the generated samples and recorded. The N values for each tradable parameter can be transformed to a PDF or
CDF where the mean and other statistical characteristics of interest can be calculated. Hence, for N MCS samples,
a set of N vectors of input variables and a set of N vectors of tradable parameters are formed.

B. Subset Simulation
Subset Simulation (SS) is an adaptive stochastic simulation procedure for efficiently computing small tail

probabilities.8,9 Originally developed for reliability analysis of civil engineering structures, SS stems from the idea
that a small failure probability can be expressed as a product of larger conditional failure probabilities for some
intermediate failure events, thereby converting a rare event simulation problem into a sequence of more frequent
ones.

Without loss of generality, assume one tradable parameterY and that it is positive-valued. For a specified threshold
value ξ for which P(Y > ξ) is of interest, let 0 < ξ1 < ξ2 < · · · < ξm = ξ be an increasing sequence of intermediate
threshold values. By the definition of conditional probability,

P(Y > ξ) = P(Y > ξ |Y > ξm−1) · P(Y > ξm−1) = · · · = P(Y > ξ1)

m∏
i=2

P(Y > ξi |Y > ξi−1) (4)

The original idea of SS is to estimate P(Y > ξ1) and {P(Y > ξi |Y > ξi−1): i = 2, . . . , m} by generating samples of
� conditional on {Y(�) > ξi}, i = 1, . . . , m. In implementations, the intermediate failure threshold values ξ1, . . . , ξm

are generated adaptively using information from simulated samples so that the sample estimate of P(Y > ξ1) and
{P(Y > ξi |Y > ξi−1): i = 2, . . . , m} always correspond to a common specified value of the conditional probability
p0. By carrying out the procedure until ξm > ξ , the simulated samples provide information for establishing the CDF
of Y covering the small-tail probabilities of interest.

1. Markov Chain Monte Carlo
The efficient generation of conditional samples is pivotal in the success of SS. In general, it is highly non-trivial

(if possible) to generate independent samples according to an arbitrarily given distribution but it turns out that it is
possible to generate dependent samples according to the distribution. This is made possible through the machinery
of Markov Chain Monte Carlo (MCMC) simulation.12 Markov Chain Monte Carlo is a class of powerful algorithms
for generating samples according to any given probability distribution. It originates from the Metropolis algorithm
developed by Metropolis et al. for applications in statistical physics.13 A major generalization of the Metropolis
algorithm was due to Hastings for applications in Bayesian statistics.14 In MCMC, successive samples are generated
from a specially designed Markov chain whose limiting stationary distribution tends to the target PDF as the length
of the Markov chain increases. Markov chain samples explore and gain information about the failure region as the
Markov chain develops.

An essential aspect of the implementation of MCMC is the choice of ‘proposal distribution’ which governs the
generation of the next sample from the current one. Such a choice depends on the nature of the input variables as
well as the sensitivity of the failure probability to each of these parameters. The efficiency of SS is robust to the
choice of the proposal distribution, but tailoring it for a particular class of problem can certainly improve efficiency.
Reported results in structural reliability applications also reveal that the efficiency is also relatively insensitive to the
complexity of the problem.15,16 The computational effort, measured in terms of the number of samples required to
achieve a given coefficient of variation of probability estimate, generally grows in a logarithmic fashion (specifically,
as O((log P)2) as the target probability level P decreases, in contrast to O(1/P) for traditional Monte Carlo.9
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2. Procedure Overview
The procedure for adaptively generating samples of � conditional on {Y(�) > ξi}, i = 1, . . . , m by SS, is sum-

marized as follows. First, N samples {�0,k: k = 1, . . . , N} are simulated by direct Monte Carlo simulation, i.e.,
they are independent and identically distributed (i.i.d.) as the original PDF. The subscript ‘0’ here denotes that the
samples correspond to ‘conditional level 0’ (i.e., unconditional). The corresponding values of the tradable variable
{Y0,k: k = 1, . . . , N} are then computed. The value of ξ1 is chosen as the (1 − p0)N-th value in the ascending list of
{Y0,k: k = 1, . . . , N}, so that the sample estimate for P(F1) = P(Y > ξ1) is always equal to p0. Here, we have assumed
that p0 and N are chosen such that p0N is an integer and P(F1) corresponds to the probability of being in the (first)
failure region.

Due to the choice of ξ1, there are p0N samples among {�0,k: k = 1, . . . , N} whose responseY lies in F1 = {Y > ξ1}.
These are samples at ‘conditional level 1’ and are conditional on F1. Starting from each of these samples, MCMC
is used to simulate an additional (1 − p0)N conditional samples so that there is a total of N conditional samples at
conditional level 1. The value of ξ2 is then chosen as the (1 − p0)N-th value in the ascending list of {Y1,k: k = 1, . . . , N},
and it defines F2 = {Y > ξ2}. Note that the sample estimate for P(F2|F1) = P(Y > ξ2|Y > ξ1) is automatically equal
to p0. Again, there are p0N samples lying in F2. They are samples conditional on F2 and provide “seeds” for applying
MCMC to simulate an additional (1 − p0)N conditional samples so that there is a total of N conditional samples at
“conditional level 2.”

This procedure is repeated for higher conditional levels until the samples at ‘conditional level (m − 1)’ have been
generated to yield ξm as the (1 − p0)N-th value in the ascending list of {Ym−1,k: k = 1, . . . , N} and that ξm > ξ so that
there are enough samples for estimating P(Y > ξ). Note that the total number of samples, i.e., number of evaluations
of the tradable variable, required by SS is equal to NT = N + (m − 1)(1 − p0)N. This procedure is illustrated in
Fig. 1.

Fig. 1 Illustration of Subset Simulation procedure.
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The choice of p0 affects how fast the target probability level is reached. Clearly, a large value of p0 leads to more
samples accepted for the next simulation level but SS then requires more levels to reach the target probability level.
Conversely, when p0 is small only a small fraction of samples are accepted for the next level. In this case the target
probability level may be reached faster but at the expense of a higher error in the corresponding threshold value ξ .
Numerical experiments show the efficiency of SS is robust to the choice of p0 on the range 0.1 to 0.5. For convenience
in implementation, p0 = 0.1 is often chosen.

3. Modifications to Algorithm
Originally developed and applied in estimating small failure probabilities in high-dimension structural-engineering

applications, the SS algorithm in [8] and [9] is modified to handle more general situations such as the uncertainty in
engineering design formulation provided by Eq. (2). The major modification made to the algorithm developed by [8]
is in the type of input variables and their corresponding proposal PDFs (p∗

j ). In [8] only continuous input variables
were considered and a continuous uniform distribution centered at the current input variable value with a width
equal to 2χσj was always used for the proposal PDF. The variables in the design of a complex multidisciplinary
system may be continuous, discrete, and discrete choices among alternatives so additional and mathematically valid
proposal PDFs are implemented as shown in Table 2.

4. Parameters of Interest
Approximate formulae have been derived to assess the error in the failure probability estimates.9 The derivation

assumed the intermediate threshold values ξ1, . . . , ξm were fixed. In particular, the coefficient of variation (COV) δ

of the estimate for P(Y > ξm), defined as the ratio of its standard deviation to its mean, may be bounded above by
using

δ2 ≤
m∑

i,j=1

δiδj + o(1/N) (5)

where δi is the COV of the estimate for P(Y > ξi |Y > ξi−1) (with the convention that P(Y > ξ1|Y > ξ0) = P(Y > ξ1)),
given by

δ2
i = 1 − p0

p0N
(1 + γi) (6)

Table 2 Proposal PDFs for different uncertain input variables.

Input variable Proposal PDF p∗
j Description

Continuous U(θk(j) − χσj , θk(j) + χσj ) a continuous uniform distribution centered at
the current input variable value with a width
equal to 2χσj

Discrete Ud(�θk(j) − χσj �, �θk(j) + χσj 	) a discrete uniform distribution centered at the
current input variable value with a width
equal to 2χσj rounded to the nearest integers

Discrete choice among options Cd(∼) a discrete custom distribution that is identical
to the actual variable PDF qj when the
most probable value is the current sample;
otherwise the current sample and the most
probable value probabilities are swapped
(other PDF values and probabilities are
unchanged)

Constant n/a unchanged for all samples in a given Markov
chain so no p∗

j is needed
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In Eq. (6), γi is a correlation factor that reflects the correlation among the samples at the (i − 1)-th conditional level.
It is given by

γi = 2
N/Nc−1∑

k=1

(
1 − kNc

N

)
ρi(k) (7)

where p0 is assumed to be chosen such that Nc = p0N is an integer and ρi(k) can be estimated using the simulated
samples. Note that γ1 = 0 as the initial simulation stage corresponds to a traditional MCS. The value of γi for
i = 2, . . . , m can be estimated using the Markov chain samples at each (i − 1)-th conditional level. Since from
Eq. (6), δi is O(1/

√
N), Eq. (5) indicates that that the COV δ of the failure probability estimate is O(1/

√
N),

which is similar to standard Monte Carlo simulation. The actual value of δ depends on the correlation between
the intermediate conditional probability estimates, which arises from the fact that some of the samples from one
simulation level are used for generating the samples of the next level.

It should be noted that there is a relationship between χ and γ . The scaling parameter χ specifies the spread of
p∗

j . The spread governs the maximum allowable distance that the next sample in a Markov chain can depart from the
current one and hence affects the size of the region that can be covered by the algorithm within a given number of
steps. In general, the larger the spread, the larger the region covered by the Markov chain samples. Smaller spreads
(small value of χ ) tend to increase the correlation among Markov chain samples (low value of γ ), slowing down
the convergence of the MCMC estimator. Conversely, a large spread (high value of χ ) will increase the number of
repeated samples (high value of γ ) and thus also slow down the convergence of the MCMC estimator. The reason
for this latter situation is that when the spread is large a candidate state will often be generated far away from the
current sample. A candidate state may therefore not have a high probability of lying in the “failure” region and hence
be rejected frequently. Thus, the choice of the spread of p∗

j is a trade off between correlation effects arising from
proximity and repeated samples from rejection.

III. Application
The investigated method is applied to estimating the propellant required for attitude control by a spacecraft,

specifically the Jet Propulsion Laboratory (JPL)/NASA Mars Exploration Rover (MER) cruise stage. The analysis
that follows was performed ex-post facto at an assumed period just before the preliminary design review (PDR).
Preliminary design review is one of the most important periods for determining and updating uncertainty estimates in
the development of an ACS. Although not performed in this paper, the method can be repeated at other times during
design to further update uncertainty estimates. For simplicity, only one tradable parameter, namely the propellant
mass required, is investigated. The results of this method are compared to the actual MER ACS values.

A. Mars Exploration Rover Spacecraft
The MER project had the primary objective of placing two mobile science laboratories, MER-A (Spirit) and

MER-B (Opportunity), on the surface of Mars in order to remotely conduct geologic investigations, including
characterization of a diversity of rocks and soils that may hold clues to past water activity. The MER project used
the 2003 launch opportunity to deliver two identical rovers to different sites in the equatorial region of Mars. The
MER project was managed by JPL, a federally funded research and development facility managed by the California
Institute of Technology for NASA. The design of MER officially began in April 2000. The MER flight system was
an adaptation of the Mars Pathfinder (MPF) spacecraft design which was launched in 1996 and landed successfully
on Mars on 4, July 1997.

The MER flight system comprised four major components: an Earth-Mars cruise stage; an entry, descent, and
landing system; a lander; and a mobile science rover with an integrated instrument package. Figure 2 illustrates
the MER flight system in its Earth-Mars cruise configuration. The MER ACS was designed and developed by
JPL/NASA with several contractors providing components and expertise. Except for the shared flight computer and
inertial measurement units, the ACS resided on the cruise stage. The MER ACS flight software was run on the
command and data handling system that resided on the rover within the lander. This was possible via a connection
between the rover support board and the remote electronic unit on the cruise stage. During the interplanetary transfer
from Earth to Mars, MER was a spin-stabilized spacecraft with a nominal spin rate of 2 rpm and the cruise stage
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Fig. 2 MER spacecraft during cruise to Mars.

provided most of the traditional spacecraft subsystem functionality, such as propulsion, power, communications,
thermal, and attitude control.17 Roncoli and Ludwinski17 discuss the MER mission in detail. The MER cruise stage
used two clusters of four 4.5 N Aerojet MR-111C engines (thrusters), one on each side as shown in Fig. 3. The z-axis
is the spin axis. The spin axis moment of inertia is the spacecraft’s maximum moment of inertia. The two engine
clusters are on the +x and −x axes. The +y axis is out of the page in Fig. 3. Engines 1, 2, 5, and 6 are in the x-z
plane whereas engines 3, 4, 7, and 8 are in the x-y plane. All engines are canted at an angle of 40◦ from the x-axis.
The effective moment arm of all engines is therefore r = R · sin 40◦ ≈ 0.643R. Two engines, one on each side of
the spacecraft, with equal and opposite thrust vectors are fired for attitude re-orientation or slew maneuvers. Ideally,
a torque is imparted only about the spacecraft’s center of mass and no change in the spacecraft trajectory results.
For example, firing engines 3 and 8 would spin the spacecraft (counter clockwise) about the +z axis. The propellant
required on MER for attitude control was estimated at 4.4 kg using a worst-case deterministic approach.18

B. Model Assumptions
The total propellant required by the spacecraft for attitude control is the sum of the propellant required for over-

coming all spin/de-spin maneuvers, required attitude update maneuvers including any possible fault protection (safe
mode) recovery maneuvers, and allocations for external disturbance (i.e., solar torque build-up) compensation. The
model described in [10] is assumed for calculating these individual propellant mass maneuver values sequentially
based on the time they occur from Earth launch. This model was created to analyze the MER flight system (cruise
stage), specifically the Earth-to-Mars interplanetary-cruise portion of the mission. Although the model described

Fig. 3 MER engine cluster configuration.
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in [10] is a general attitude-control model based on the re-orientation motion of a rigid spacecraft found in refer-
ences [19] and [20], the application of this model and analysis to other spacecraft would require verification of the
assumptions and possible alterations. The major assumption in this model and analysis is the use of a simple feed-
back control model. The behavior of an actual ACS system can be understood only if feedback control is correctly
implemented and modeled. Nonetheless, for the conceptual estimation of propellant required for attitude control,
the difference between a sophisticated feedback control model and the feedback model implemented is likely small.
Higher-fidelity models implementing feedback control for all maneuvers could readily be substituted for the simple
models described. Model uncertainty addresses this difference and is accounted for in the analysis. Additional model
assumptions assumed are provided in [10].

C. Model Formulation
The model described in [10] actually combines three sub-models. Each of the three sub-models calculates the

propellant required for spacecraft attitude control maintenance: spinning/de-spinning the spacecraft, slewing the
spacecraft, and compensating for external disturbances. In total the three sub-models comprise over three dozen
physics-based equations and almost 60 input variables. This propellant mass model represents the response functions
G in Eqs. (1) and (2).

1. Spin/De-spin Maneuvers
Spinning a spacecraft up or down is done for a variety of reasons including instrument operation, thermal control,

and cleaning-up launch vehicle dispersions. All three were the case with the MER flight system. The MER design
used a Ball Aerospace CS-203 star scanner requiring a nominal spin rate of 2 rpm to successfully operate during the
Earth-Mars cruise. This decision in turn impacted the thermal design.21 Lastly, the third stage of the Boeing Delta II
launch vehicle that was used to inject MER on its interplanetary trajectory was spun up to 70–80 rpm for gyroscopic
stiffness against disturbances during operation of its solid rocket motor. After the solid rocket motor burned out, the
spin rate was reduced to 12 rpm by the launch vehicle’s yo-yo de-spin system, and reduced further to 2 rpm by the
ACS for the entire cruise to Mars. As discussed earlier, a simple feedback was implemented in this model to account
for uncertainties, particularly in the thrust of the engines used. The aforementioned procedure is repeated until the
actual spin rate is within a specified value of the desired spin rate (assumed to be 0.2 rpm in this analysis).

2. Slew Maneuvers
Slew (Re-point) maneuvers are performed by spacecraft for thermal control, power generation, telecommunication,

and observation. In the case of MER, the spinning cruise stage slewed periodically from the nominal orientation to
one in which the communication antennae could be pointed correctly towards the Earth. These slews for antennae
pointing, by design, also met thermal and power requirements of the spacecraft. The slew algorithm presented in [10]
is complicated by the fact that only a discrete number of engine pulses is possible and that the thrust of the engines
used for pulsing is uncertain. A pointing control requirement of 2◦ is assumed in the subsequent analysis. The simple
feedback model for slewing could be replaced by a more sophisticated algorithm that determines the angle slewed
after each pulse if components onboard are sophisticated enough to measure these small changes.

3. External Disturbance Compensation
The only external torque experienced by MER during its interplanetary cruise is a solar pressure torque. The

sub-model presented in [10] calculates the solar torque build-up on a daily basis as well as after each other type
of maneuver. When the spacecraft slews an amount greater than the pointing control requirement due to this solar
torque, the spacecraft is re-oriented via a controlled slew maneuver described in the previous section. The amount of
propellant required for each of these slew corrections follows the slew maneuver sub-model previously discussed.

D. Classification and Probabilistic Modeling of Variables
The input variables involved in the propellant mass model are classified as aleatory, design, or requirement

uncertainties. The classification aids in understanding the impact of uncertainty in the design of the ACS. This
analysis is different from similar analyses, e.g. [22] and [23], in that much of the uncertainty is in the actual operation
(mission sequence) of the final subsystem and not in the design. However, these uncertainties in the operation of
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Table 3 General input variables.

Variable Type Distribution type and parameter Units

pinlet aleatory N(690, 23) kPa
Tp aleatory N(25, 2.5) ◦C
α aleatory N(0, 0.5) deg
q aleatory N(0.6, 0.06) –
Jxx design U(300, 450) kg-m2

Jyy design U(300, 450) kg-m2

Jzz design U(450, 600) kg-m2

Amax design N(5.31, 0.053) m2

κ design U(0.6, 0.7) m
R design N(1.3, 0.0013) m
gs aleatory N(1400, 14) W/m2

ωi requirement N(12, 1.33) rpm

the final subsystem are significant and do impact the design of the subsystem. Uncertainties in the general variables
are first discussed. Uncertainty in the mission sequence is then introduced. A description of uncertainties in engine
selection follows. A discussion of model uncertainty concludes this section.

1. General Variables
Variables such as the moment of inertias, thruster misalignment angles, and engine moment arm, are assumed to

be uncertain quantities. Table 3 lists these uncertainties and their representation in the analysis. For each variable,
the probability distribution assumed and the corresponding parameters that define that probability distribution are
provided. The various distributions listed in Table 3 were determined primarily by expert opinion (MER engineers
and managers) and, to a lesser degree, statistical analysis.

2. Mission Sequence
The mission sequence provides a conduit to represent uncertainty inACS operation. The nominal mission sequence

involves de-spinning the spacecraft from 12 to 2 rpm shortly after separating from the launch vehicle’s third stage.
After several check out maneuvers, the primary objectives of the ACS are to perform slew maneuvers for communi-
cation and overcome the build-up of solar torque on the spacecraft. ACS must also be able to support fault protection
(FP) in the event of any anomalies during cruise that might require ACS to autonomously slew to a sun-safe attitude
or recovery from any undesirable attitude or rate changes. Uncertainties in the mission sequence are listed in Table 4.
Uncertainties exist in when to perform slew maneuvers and in the magnitude of the actual slew.

3. Engine Selection
The MER project built on the organizational experience gained with the development and operation of MPF. The

original design philosophy for ACS on MER was a replica (“build-to-print”) of the 1996-1997 MPF design. The
MER ACS design departed from the original MPF design due to lessons learned from MPF. Although there were
changes to the original MPF flight software architecture and design as well as robustness additions for the cruise and
entry, descent, and landing, the attitude control effectors (Aerojet MR-111C) remained unchanged from MPF. These
existing engines were readily available (or easily procured) and assumed early in the MER ACS design instead of
casting a wide net and looking at alternate engines. Hence, at the period around PDR there was no uncertainty in
engine selection as the decision as to which engine type to use was made months earlier.

4. Model Uncertainty
The propellant mass model discussed in [10] is assumed to be itself uncertain. The uncertainty assumed for this

model was assessed by expert opinion (MER engineers) to be normally distributed about zero with a standard deviation
of 0.05 kg: N(0, 0.05). Ideally the propellant mass model developed should be tested with several mission scenarios
and compared to the actual propellant required for these missions. Unfortunately, there were no readily accessible
examples available to test the model against. This is primarily because organizations involved in ACS operation
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Table 4 Mission sequence uncertainties.

Maneuver Maneuver Distribution type
Mission sequence event Timea type parameter and parameters Units

De-spin from third stage Cd(1, 100%) spin ωf N(2, 0.0667) rpm
Practice maneuver (“A practice”) Ud(6, 10) slewb ψ N(5, 0.5) deg
First-planned maneuver (“B1”) Ud(15, 25) slewb ψ N(50.45, 5) deg
Second-planned maneuver (“B2”) Ud(40, 60) slewb ψ N(5.13, 0.5) deg
Third-planned maneuver (“B3”) Ud(75, 85) slewb ψ N(6.35, 0.6) deg
Fourth-planned maneuver (“B4”) Ud(90, 100) slewb ψ N(2.76, 0.2) deg
Fifth-planned maneuver (“B5”) Ud(110, 130) slewb ψ N(8.51, 0.4) deg
Sixth-planned maneuver (“B6”) Ud(135, 145) slewb ψ N(9.88, 0.5) deg
Seventh-planned maneuver (“B7”) Ud(155, 165) slewb ψ N(5.64, 0.2) deg
Eighth-planned maneuver (“B8”) Ud(166, 175) slewb ψ N(5.04, 0.2) deg
Ninth-planned maneuver (“B9”) Ud(176, 185) slewb ψ N(5.75, 0.2) deg
Tenth-planned maneuver (“B10”) Ud(186, 195) slewb ψ N(4.47, 0.1) deg
Eleventh-planned maneuver (“B11”) Ud(196, 205) slewb ψ N(5.53, 0.1) deg
Twelfth-planned maneuver (“B12”) Ud(206, 215) slewb ψ N(5.85, 0.1) deg
FP: spin event Cd(216, 100%) spin ωi �(11, 0.25) rpm
FP: spin recovery Cd(216, 100%) spin ωf L(2, 0.0667) rpm
FP: emergency slew 1 Cd(216, 100%) slewb ψ �(1.5, 10.5) deg
FP: emergency slew 2 Cd(216, 100%) slewb ψ �(1.5, 10.5) deg
FP: emergency slew 3 Cd(216, 100%) slewb ψ �(1.5, 10.5) deg
FP: emergency slew 4 Cd(216, 100%) slewb ψ �(1.5, 10.5) deg
FP: emergency slew 5 Cd(216, 100%) slewb ψ �(1.5, 10.5) deg
FP: emergency slew 6 Cd(216, 100%) slewb ψ �(1.5, 10.5) deg

adays + launch; bno formal time requirement to complete slews within (30 minutes assumed); FP = fault protection

rarely keep detailed data in a format that could be incorporated or will not share this data for proprietary and/or
International Traffic in Arms Regulations (ITAR) reasons. Model uncertainty is applied after MCS by convolving
the model uncertainty distribution with the probabilistic results from simulation. In SS, model uncertainty is treated
in analogous manner as a general input variable uncertainty.

E. Simulation and Analysis of Results
A deterministic case with input variables assuming their nominal values was first run to compare subsequent

probabilistic results with. The results of this deterministic case indicated a total of 1.174 kg of propellant would
be required by the attitude control system. This 1.174 kg comprises 0.301 kg for spin maneuvers, 0.137 kg for
slew maneuvers, 0.200 kg for solar torque compensation, and 0.536 kg for fault protection. For the two simulation
techniques, the number of calls to the propellant mass required model was set at NT = 10,000 for MCS and N = 500
for SS (per SS level). Subset Simulation is implemented with parameters p0 = 0.1 and χ = 1. Four simulation levels
(0 to 3), each with 500 samples, are carried out so that the smallest tail probability that can be covered is of the order
of 10−4. In other words, confidence limits up to 99.99% are covered.

All subsequent tables and figures reflect the final uncertainty in propellant mass required. The CDF values for
both MCS and SS are shown in Fig. 4.

Figures 4(b) to (d) demonstrate the performance of both simulation techniques at the upper tail of the distribution.
Monte Carlo simulation is the benchmark for comparison but requires a substantial number of calls to the model
(NT ) to obtain values for the entire CDF range. As theorized, SS provides a comparable accuracy as MCS at the
CDF tail despite requiring only a fifth the calls to the model. Table 5 details the statistics of SS by simulation level
for propellant mass.

The low values of γ in Table 5 indicate that the modified MCMC algorithm is accepting new samples at each
simulation level within a chain. This is evident from Eq. (7), because when a new sample is rejected the next
sample on the Markov Chain is taken as the current sample. If this happens frequently it will significantly increase
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Fig. 4 Propellant mass CDFs at different simulation levels.

the correlation among samples and hence γ . The choice of χ = 1 provided a reasonably low-value of γ yielding
satisfactory efficiency. Alternate values of χ were not exhaustively investigated to optimize the efficiency. It should
be noted from Table 5 that there is significant discrepancy between SS and MCS results at simulation level 3
(which would be of interest to an extremely risk-averse decision maker). This is partially due to estimation error
in MCS as the final column indicates SS achieves a comparable accuracy as 70,779 MCS samples (NMCS) whereas
only NT = 10,000 were performed for MCS. The error drops to +0.40% when compared to 70,000 MCS samples.
Hence, SS provides comparable results as Monte Carlo at this 99.99th percentile value yet requires only a fraction
(1,850/70,000 ≈ 2.6%) of the number of samples.

Table 5 SS results by level.

SS Level NSS x Px(kg) P a
MCS (kg) Errorb (%) γ δ NMCS

0 500 90 1.426 1.417 +0.61 0 0.13416 500
1 950 99 1.660 1.655 +0.31 0.91 0.22894 1,889
2 1,400 99.9 1.858 1.851 +0.40 1.06 0.29905 11,171
3 1,850 99.99 2.074 2.154 −3.75c 1.88 0.37586 70,779

aMCS results using 10,000 samples; brelative to the 10,000 MCS samples; cMCS is not accurate at this extreme tail
value of x
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Comparing the values provided in Table 5 indicate that SS provides comparable estimates of the propellant mass
required at the percentiles of interest at a fraction of the samples. Comparing the results in Table 5 with the MER project
propellant mass estimate of 4.4 kg and the actual mission values of 0.646 kg (for MER-A) and 0.738 kg (for MER-B)
indicate both the current worst-case deterministic approach and the proposed method are conservative. It seems the
uncertainties assumed in estimating the propellant mass were either overestimated or the propellant mass came in
extremely low. If the uncertainties were overestimated (as is more likely), the proposed approach can be revised in
subsequent implementations (on future missions) taking into account the actual mission results from MER-A and
MER-B and higher-fidelity propellant-mass model.Although the overall cost of implementing the proposed approach,
whether by MCS or SS, is small in the overall design of a spacecraft attitude control system, arguably its greatest
benefit is improved decision making. The proposed approach provides a more rigorous, transparent, repeatable, and
tenable method that the current worst-case deterministic method fails to provide.

Figure 5 shows the conditional samples at different simulation levels of four selected input variables: the moment
of inertia about the spin axis (Jzz), the distance between the center of pressure and the center of mass (κ), the third
emergency slew angle (ψ3), and the modeling error (X). Level 0 corresponds to direct MCS, where the samples
are generated from their original PDF. The histograms that correspond to the original PDF of each variable are
shown with dashed lines. For each variable θ , for example, the difference between the conditional histogram and
its original distribution is an indication of its ‘sensitivity’, interpreted here as the variation of P(Y > y|θ) with θ ,
because P(Y > y|θ) = P(Y > y)p(θ |Y > y)/p(θ). In particular, when the conditional histogram is identical to the
original distribution, it shows that the particular variable does not influence the response Y.

From Fig. 5, it is interesting to note that the conditional histogram of Jzz shifts to the right at level 1 as the
simulation level increases, showing that high values of propellant mass are probabilistically associated with high
values of Jzz. Further investigation reveals no significant change in the histograms of Jxx and Jyy (not shown here)
from their original distribution, even though the source uncertainty associated with Jxx and Jyy implies a greater
COV than that of Jzz (see Table 3). Thus, in order to reduce the uncertainty in the propellant mass, it is more

Fig. 5 Conditional samples for four variables at each simulation level.
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effective to mitigate the uncertainty of Jzz than Jxx or Jyy . The variables κ and ψ3 do not show significant change
in their conditional histogram, although a slight shift to the left is observed for ψ3 at level 1 and above. There is
a graduate but slight shift in the histogram of the modeling error X as the simulation level increases, as expected.
Investigation of the conditional histogram of other input variables show that many do not differ significantly from the
original distribution, even at high-simulation levels that correspond to high values of propellant mass. This indicates
that tail probability of the propellant mass is not necessarily due to the probabilistic occurrence of some variables
appearing at the tail, but as a result of their collective arrangement. Similar phenomenon has been observed in the
study of dynamical systems subjected to stochastic excitations, where it was found that excessive response was due
to resonance in the frequency content of the excitation with the natural frequency of the system.24 Finally, it should
be noted that a similar investigation of the conditional histograms could have been carried out using direct MCS,
but it would have required significantly more computational effort than SS. For example, to obtain one conditional
sample at Level 3 (99.9th percentile), requires on average 1,000 samples, i.e., system analyses. Thus, to obtain 500
conditional samples for constructing the histograms as shown in the last row of Fig. 5, requires on average 500,000
samples, which demands significantly more computational effort than SS (that requires only 1,850 samples).

IV. Conclusion
A method for quantifying uncertainty in conceptual-level design via Subset Simulation is described. As an exam-

ple application, the investigated method is applied to estimating the propellant mass required by a spacecraft to
perform attitude control. Subset Simulation is modified to account for differences between the aerospace engineering
application and the original structural-analysis application the algorithm was originally developed for. The results of
Subset Simulation are compared with traditional Monte Carlo simulation. The investigated method allows uncertainty
in the propellant mass required to be quantified based on the risk tolerance of the decision maker. For the attitude
control example presented, Subset Simulation successfully replicated Monte Carlo simulation results yet required
significantly less computational effort. In the case of an extremely risk-averse decision maker, Subset Simulation
achieved comparable results to Monte Carlo simulation while requiring less than three percent of the computational
expense.
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